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Abstract 

Universality of shear banding has been studied by rheometric characterisation and computational simulation of polydisperse and high 
molecular weight polyacrylamide aqueous solution. The rheological results show that the slope of the steady-state shear stress of the 
polymer solution in the medium shear rate range decreases with the increase of concentration, while the steady-state shear stress of 
500c* is basically independent of the shear rate, which is a general feature of the existence of the shear banding. Taking the results of 
the steady-state flow experiment of 500c* as a reference, the two-dimensional and three-dimensional simple shear flow simulation 
study was calculated, and the calculation results found that when the steady-state shear stress is weakly dependent on the shear rate, 
the velocity field distribution within this shear rate range shows that a transient shear banding is generated, and the existence of the 
transient shear banding depends on the number of Wi applied. The larger the number of Wi, the longer the transient shear banding will 
exist. 

 
Ⅰ. INTRODUCTION 

Shear banding is a common phenomenon observed 
firstly in worm-like micellar solutions1 and subsequently in 
other complex fluids2 including entangled polymer 
solutions, suspensions, liquid crystals and soft glassy 
materials, etc. A generic feature of those complex fluids 
under shear flow is that there is a characteristic shear rate 
above which the shear stress is nearly independent of the 
applied nominal shear rate. Studies of the shear stress 
plateau region by birefringence3,4, nuclear magnetic 
resonances (NMR) velocity imaging5,6, particle tracking 
velocimetry7 and optical coherence tomography 
technique8 have revealed the existence of the banded flow 
with different values of the local shear rate. The proportion 
of the high and low shear rate bands depends upon the 
nominal shear rate.  

In order to account for the dynamics of wormlike micelle 
solutions under linear and nonlinear flow, Cates and co-
workers9,10 have extended the Doi–Edwards model11 for 
entangled polymers by incorporating the reptation 
dynamics with the breaking-recombining process and 
proposed a reptation-reaction model. In the fast breaking 
limit, the rapid breaking-recombining reaction has a pre-
average effect on the reptation time spectrum due to 
polydispersity of the micellar lengths and results in a well-
defined characteristic relaxation time. The model 
resembles the Maxwell fluid behavior with a single 
relaxation time at low frequencies in the linear viscoelastic 
regime. In the nonlinear regime, the model inherits a 
characteristic feature of the original Doi–Edwards model, 
which exhibits nonmonotonic behavior under 
homogeneous shear flow, i.e., there is a region where a 

given stress corresponds to multiple values of the strain 
rate. The shear banding was initially studied in terms of a 
mechanical instability due to the nonmonotonic behavior 
of the constitutive model under Couette and Poiseuille 
flows12-16. It was then investigated under the theoretical 
framework of the two-fluid model17, which accounts for 
flow-induced phase transitions and the mechanical 
instabilities by directly coupling viscoelastic stress and 
diffusive fluid composition. This allows to study the 
interplay between thermodynamics and hydrodynamics of 
complex fluid flows in a unified manner18-23. The model can 
select a steady state stress in a physical way for 
nonmonotonic constitutive equations under strong flow 
and directly correlate the mechanical shear band 
formation to the formation of fluid composition bands. In 
addition to the usual thermodynamic parameters for 
determining equilibrium phase behavior, the degree of 
dynamic asymmetry, characterized by the ratio of the 
moduli and the ratio of the relaxation time between the 
two phases of the fluid, governs dynamical phase 
behaviour18,19. The larger the dynamic contrast of two 
components, the bigger the shift of the equilibrium phase 
boundary under flow conditions.  

In contrast to wormlike micelle solutions, polymer 
solutions and melts exhibit multiple scale dynamics with a 
wide range of relaxation times. The relaxation spectrum 
could be significantly broadened by molecular mechanism 
such as contour-length fluctuations and constraint release. 
Furthermore, by incorporating convective constraint 
release (CCR)24,25 with an adjustable parameter, the 
nonlinear behavior of the original Doi-Edwards model 
could be tunable, so that either nonmonotonic or 
monotonic behavior could be observed depending on the 
effectiveness of constraint release.  It has been shown26 
that the shear banding could occur in complex fluid flow as 
long as its steady-state shear stress exhibits a small 
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gradient over a range of the applied nominal shear rate. 
Coarse-grained molecular dynamic simulations of 
entangled monodisperse polymer melts27 reproduced the 
typical experimental results28,29 of transient and steady 
shear banding after the stress overshoot for monotonic 
and nonmonotonic flow curves, respectively. Dissipative 
Particle Dynamics simulations30-32 further revealed that the 
shear banding occurs due to inhomogeneous chain 
segmental orientation and entanglement density of 
polymeric fluids. Their onset and underlying molecular 
mechanism are generally universal.  The higher 
polydispersity index of polymer melts is, the larger the 
effect of broadening the stress plateau. For polymeric 
melts with sufficiently long chain, shear banding could be 
remained indefinitely. For shorter chain melts, transient 
shear banding could be observed after the appearance of 
a stress overshoot, but then decayed after the stresses had 
attained their steady state.  

Over the last decades, a significant progress has been 
made on the better understanding of shear banding and 
dynamic mechanism of monodisperse flexible polymer 
solutions. However, the effects of polydispersity still 
remain elusive. In this paper, shear banding and its 
concentration dependence of commercially relevant 
polydisperse high molecular weight polyacrylamide 
solution will be studied by rheological characterization and 
computer simulations. In Section II, the experimental and 
computational methods will be introduced. The results and 
discussion are reported in Section III. The conclusions are 
drawn in Section IV.  
 

Ⅱ. METHODOLOGY 
A. Polymer solution 

A sample of commercially available polyacrylamide 
(PAAm) with a nominal average molecular weight (Mw) of 
18×106 g/mol was purchased from Polysciences, Inc 
(Catalogue No.: 18522-100) and used as received (here 
after called as 18M PAAm). It was dissolved in deionized 
water and in 60wt.% sucrose-deionized-water solution, 
respectively, to form 18M PAAm binary and ternary 
solutions. The average radius of gyration can be estimated 
by the nominal molecular weight (M) as 𝑅𝑅𝑔𝑔 =

0.0749𝑀𝑀0.64±0.01(Å)33, hence Rg = 329.5nm. Due to lack of the 
standard high molecular weight polymer sample, 
quantitative characterization of molecular weight and 
distribution of 18M PAAm sample by Gel Permeation 
Chromatography is very difficult if not impossible. However, 
it may be reasonably expected that its polydispersity index 
would be significantly higher than 5M PAAm sample of 
Mw=5.7×106 g/mol and Mw/Mn = 34.4, supplied by the 
same source and characterized in our previous work.34 

Using a simple cubic packing assumption, the overlap 
concentration was estimated as c*= 0.00946 wt.%. A series 
of 18M PAAm binary and ternary solutions were prepared 
and studied respectively in a semi-dilute entangled 
concentration range from 9.6c* (0.096wt.%) to 500c* 
(5wt.%) approximately. 
 
B. Rheometry 

The rheological properties of 18M PAAm binary and 
ternary solutions were measured at a constant 
temperature of 25℃ using an ARES-G2 shear rheometer 
(TA Instruments). A cone-plate fixture (diameter= 50 mm, 
angle=0.04 rad) was used. The plate was coupled with an 
Advanced Peltier System (APS) connected to a 
ThermoCube Model 10-300 (115/230 V, 50/60 Hz) water 
bath system with temperature control accuracy of ± 0.2℃. 

 
C. Computational method  

The motion of an incompressible, isothermal viscoelastic 
fluid is governed by the continuity equation, 

𝛁𝛁 ∙ 𝐯𝐯 = 0 ,       (1) 

where v is the velocity, and the momentum balance 
equation, 

ρ �𝜕𝜕𝐯𝐯
𝜕𝜕𝜕𝜕

+ 𝐯𝐯 ∙ 𝛁𝛁𝛁𝛁� = −𝛁𝛁𝑝𝑝 + 𝛁𝛁 ∙ 𝛕𝛕(𝑡𝑡)  ,   (2) 

where ρ is the fluid density, p is the isotropic pressure, and 
𝛕𝛕 is the extra-stress tensor. The extra-stress of viscoelastic 
fluid consists of two parts, the first part is the contribution 
of solvent and the other part is the contribution of polymer, 
as shown below, 

𝛕𝛕(𝑡𝑡) = 𝜂𝜂𝑠𝑠(∇𝐯𝐯+ ∇𝐯𝐯𝑇𝑇) + 𝝉𝝉𝑝𝑝(𝑡𝑡)  ,    (3) 

where 𝜂𝜂𝑠𝑠 is the viscosity of solvent, 𝝉𝝉𝑝𝑝(𝑡𝑡) is the polymeric 
stress and will be defined by a constitutive model. 

Doi and Edwards pioneered the molecular theory of 
entangled polymer dynamics based on tube model in 
1978.11 The Rolie-Poly model35 used for modeling transient 
shear banding of polymer solutions in the present study is 
a simplified version of the full Doi and Edwards molecular 
theory.36 It could account for the main dynamic 
mechanisms of entangled polymer chains, including 
reptation, convective constraint release, chain stretch etc. 
The conformation tensor of polymer chain A(t) in a velocity 
field v evolves in time as 
𝐷𝐷𝐀𝐀
𝐷𝐷𝐷𝐷

= 𝐋𝐋 ∙ 𝐀𝐀+ 𝐀𝐀 ∙ 𝐋𝐋𝑇𝑇 + 𝑓𝑓(𝐀𝐀)            (4) 

where 𝐷𝐷𝐀𝐀
𝐷𝐷𝐷𝐷

 is the materials derivative, 𝐋𝐋 = 𝛁𝛁𝛁𝛁 is the velocity 

gradient tensor and 𝐋𝐋𝑇𝑇 is its transpose. The model function 
𝑓𝑓(𝐀𝐀) is defined by the non-Gaussian version of the Rolie-
Poly constitutive model.37 It could account for the finite 
extensibility of polymer chains and is given by 



 

  
 

𝑓𝑓(𝐀𝐀) = −
1

𝜆𝜆𝐷𝐷
(𝑨𝑨 − 𝑰𝑰) − 2

𝜆𝜆𝑅𝑅
𝑘𝑘𝑠𝑠(𝜒𝜒)(1 −�

3

𝑡𝑡𝑡𝑡(𝑨𝑨) )  �𝑨𝑨 + 𝛽𝛽(
𝑡𝑡𝑡𝑡(𝑨𝑨)

3
)
𝛿𝛿
(𝑨𝑨 −

𝑰𝑰)�,          (5) 

where 𝑰𝑰 is the unit tensor, 𝜆𝜆𝐷𝐷 is the reptation time or the 
disengagement time of entangled polymer chain, 𝜆𝜆𝑅𝑅 is the 
longest Rouse time or stretch time of polymer chain, 𝛽𝛽 is 
the coefficient of the convective constraint release, 𝑘𝑘𝑠𝑠(𝜒𝜒)  is  
the nonlinear spring coefficient and is approximated by 

 𝑘𝑘𝑠𝑠(𝜆𝜆) =
(3− χ2

χmax2 )(1− 1
χmax2 )

(1− χ2

χmax2 )(3− 1
χmax2 )

 ,     (6) 

Where 𝜒𝜒 = �𝑡𝑡𝑡𝑡(𝐀𝐀)/3 is the chain stretch ratio with respect 
to its equilibrium conformation, 𝜒𝜒max  is the fixed 
maximum stretch ratio of polymer chains. Thus, the 
polymeric stress could be readily calculated from its 
conformation tensor A by 

 𝝉𝝉𝑝𝑝(𝑡𝑡) = 𝐺𝐺𝑘𝑘𝑠𝑠(𝜆𝜆)[𝐀𝐀(𝑡𝑡) − 𝑰𝑰] =
𝜂𝜂𝑝𝑝

λD
𝑘𝑘𝑠𝑠(𝜆𝜆)[𝐀𝐀(𝑡𝑡) − 𝑰𝑰], (7) 

where 𝐺𝐺 = 𝜂𝜂𝑝𝑝
λD

  is the plateau modulus and 𝜂𝜂𝑝𝑝  is the zero-

shear polymer viscosity. Further details about the Rolie-
Poly model could be found elsewhere.35,37 

The above continuity, momentum and constitutive 
equations are discretized using the finite volume method 
based on OpenFOAM CFD toolbox, released by OpenCFD 
Ltd, and solved by a viscoelastic fluid flow solver available 
in RheoTool. The terms of diffusion, gradient and 
divergence in the governing equations are discretized by 
the central differencing scheme. The convection terms are 
discretized by the MINMOD scheme. The temporal terms 
are discretized by the backward scheme. The above 
discretization produces a system of linear equations to 
relate the cell face values of the unknown eld variables at 
current time to their values at previous time and at the 
neighboring cell centers. The system can be solved by one 
of the iterative matrix solvers, including the conjugate 
(PCG) and biconjugate gradient (PBiCG) methods, available 
in the Open-FOAM toolbox. The details can be found in the 
OpenFOAM and RheoTool User Guide, respectively.38,39  

Ⅲ. RESULTS AND DISCUSSION 
A. Linear viscoelasticity 

18M PAAm binary and ternary solutions with various 
concentrations were characterised in the linear viscoelastic 
region under the small-amplitude oscillatory shear flow in a 
range of frequencies and a constant 2% strain amplitude. The 
results are shown in Fig.1. In analogy to the time-temperature 
superposition (TTS) principle, the concentration dependence of 
the rheometric properties of polymer solutions can be analyzed 
by applying the time-concentration superposition (TCS) 
procedure to the data presented in Fig.1. With respect to an 
arbitrary reference concentration (set as 500c* and 92.1c* for 

18M PAAm binary and ternary solution, respectively), a master 
curve of storage modulus (G’), loss modulus (G”) and complex 
viscosity (η*) could be obtained by shifting their linear 
viscoelastic data horizontally by a factor ac and vertically by a 
factor bc, respectively. Since the concentration scaling of Rouse 
dynamics is different from the terminal flow dynamics 
dominated by the entanglement dynamics, the TCS could only 
be realized either in the terminal dynamic regime or in the 
Rouse regime. In the present work, the TCS is applied in the 
terminal dynamic regime for the binary solutions and in the 
Rouse regime for the ternary solutions, respectively, as shown 
in Fig.2. Thus, the shifted storage and loss moduli of various 
concentrations are not so well superimposed in the high 
frequency region for the binary solutions and in the low 
frequency region for the ternary solutions.  

  
Fig.1 The storage modulus G’ and the loss modulus G’’ of the 18M 
PAAm binary and ternary solution as a function of angular frequency. 

 
Fig.2 A master curve of storage modulus (G’) and loss modulus (G”), 
complex viscosity after shifting the linear viscoelastic data of the semi-
dilute 18M PAAm binary and ternary solutions horizontally by a factor 
ac and vertically by a factor bc, with respect to cref=500c* and cref=92.1c*, 
respectively. 

If considering the shifting factors ac and bc as a reduced 
frequency (or equivalently an inverse of a characteristic time) 
and a reduced plateau modulus, respectively, the ratio of the 
shifting factors could be related to the complex viscosity and 
scaled with polymer concentration as ac/bc. Fig.3 plots ac,1/ bc, 



   

  
 

ac/bc as a function of (cref/c) in the logarithmic scales.40 The plot 
exhibits a well-defined power law scaling with the relevant 
exponent, which actually resembles the concentration scaling 
exponent of characteristic time, modulus and complex shear 
viscosity, respectively. Within the standard deviation, the same 
scaling exponents of the 18M PAAm binary solutions over a 
wide concentration range from 10c* to 500c* are found.40  
However for the ternary solutions, in which the TCS is applied 
in the Rouse regime, the concentration scaling exponent of the 
Rouse time is negative, i.e. -1.9±0.1, which is approximately 
same as the exponent of the modulus. Hence, it results in the 
independence of its complex viscosity with polymer 
concentration.  

 
Fig.3 The concentration scaling of the shifting factor ac, bc and ac/bc to 
obtain the master curves of G’, G” and η* in Fig.2 for the semi-dilute 
entangled 18M PAAm binary (cref=500c*) and ternary (cref=92.1c*) 
solutions. 

B. Non-linear shear rheometric properties 

All the samples are characterized by the steady shear 
experiment. In Fig.4, the steady shear stress (σ), the shear 
viscosity (η) and the first normal stress difference (N1) are 
plotted as a function of shear rates for the 18M PAAm binary 
and ternary solutions in various concentrations, respectively. 
The TCS principle is also extended in the analysis of their 
concentration dependence. By choosing cref=500c* and 
cref=92.1c*, respectively, and using appropriate shift factors, 
the steady rheometric property curves could be superimposed 
as shown in Fig.5. The suitable horizontal shifting factors ac for 
the superposition of the steady rheometric properties have 
little difference from those used for the construction of the 
master curves in Fig. 2. However, the different vertical shift 
factors bc

’ and bc
” are usually required due to the difference of 

the linear and nonlinear viscoelastic response to shear flow. As 
a consequence of the above shifting procedure, the curves of 
the steady shear viscosity, the steady shear stress, the first 
normal stress difference in Fig.4 could be superimposed as 
shown in Fig.5. 

(a)

 
(b) 

 
Fig.4 The steady shear stress (σ), the shear viscosity (η) and the first 
normal stress difference (N1) are plotted as a function of shear rates for 
(a) 18M PAAm binary solutions and (b) 18M PAAm ternary solutions. 
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(b) 

 
Fig.5 The master curves of the steady shear stress (σ), the shear 
viscosity (η) and the first normal stress difference (N1) for (a) 18M 
PAAm binary solutions and (b) 18M PAAm ternary solutions. 

 
Fig.6 The concentration scaling of the shifting factor ac/bc to obtain the 
master curves of the steady shear viscosity and the first normal stress 
difference in Fig.5 for the semi-dilute entangled 18M PAAm binary 
(cref=500c*) and ternary (cref=92.1c*) solutions. 

Fig.6 shows a power law concentration scaling of the shifting 
factors (ac/bc

’ , bc
’ and 1/bc

”) for the superposition of the steady 
shear viscosity, the shear stress and the first normal stress 
difference, respectively. In comparison with the linear 
rheometric properties of the same solutions, the concentration 
scaling exponent of the steady shear viscosity for the 18M 
PAAm binary solutions significantly decreases to 2.02±0.04. 
Whereas there is little change for the 18M PAAm ternary 
solutions. The scaling of its steady shear viscosity is 
approximately independent of polymer concentration. The 
results indicate that the Cox-Merz rule holds approximately in 
the relatively low polymer concentration region.40 For the 
binary solution, the scaling exponent of the shear stress, 
0.8±0.1, is about double that of its first normal stress difference, 
0.4±0.1. Whereas for the ternary solutions, the scaling 
exponent of the shear stress, 1.8±0.2, is about half that of its 
first normal stress difference, 3.7±0.4. The 18M PAAm ternary 
solution shows much stronger concentration scaling than that 
of the binary solutions. The phenomenon of "shear thinning" is 

common in semi-dilute entangled 18M PAAm solution with 
strong elasticity. The slope of the steady-state shear stress in 
the intermediate shear rate range decreases with the increase 
of polymer concentration. Noticeably the steady-state shear 
stress of 500c* 18M PAAm shows a weak dependence on the 
shear rate with a slope of 0.039±0.004 over the shear rate 
between 0.5 s-1 and 100 s-1.  It potentially may cause "transient 
shear banding" and will be verified qualitatively by a 
computational study below.  

 
C. Simulation results 

For simplicity and without lose much generality in 
studying transient shear banding, the steady shear 
rheometric data of 18M PAAm binary solution in Fig.5(a) 
was fitted by the single mode Rolie-Poly model. The results 
are listed in Table 1, which give a good fit to the steady 
shear stress and viscosity over a wide range of shear rate 
from 0.05 s-1 and 5000 s-1 as shown in Fig.5(a). However, 
the calculated first normal stress difference significantly 
deviates from the experimental data as shear rate exceeds 
about 3 s-1. The Rolie-Poly model were solved under simple 
shear flow in a 200×100×100 or 200×200×1 computational 
grid and various nominal shear rates. The numerical results 
were analyzed by Paraview software and reported below. 

Table 1 Parameter selection for the single-mode Rolie-Poly model. 

mode
l 

Rolie-Poly 

ρ 1000 kg/m3 
ηs 0.001 Pa·s 
ηp 1000 Pa·s 
λD 4 s 
λR 0.005 s 
χmax 3 
β 1 
δ -0.5 

The shear stress is nearly flat over the nominal shear 
rate range between 5 s-1 and 100 s-1. The simulation results 
are shown in Fig.7.  

Moreover, the shear rate 𝛾̇𝛾=5 s-1 is in the middle of the 
shear stress approximation platform region located in 
Figure 6. Figure 7(a) shows the distribution of the velocity 
Ux of the fluid in the y-direction. As can be seen from the 
figure, the fluid can be divided into two shear bands at 5 s, 
and the strain rate of the upper one is 33.86 s-1, while the 
lower one is 0.87 s-1, which can basically correspond to the 
upper and lower bounds of the steady-state shear stress 
platform using the Rolie-Poly model, which is also a 
general feature of the shear band behavior. However, as 



   

  
 

the time further increases, the shear band at the upper 
edge gradually spreads downward by the flow field of the  

 
 

Fig.7 The cloud map of the velocity field along the x-direction from 1s to 30s with the average shear rate  𝛾̇𝛾=100 s-1 in three-dimensional simple shear flow. 
 

 
Fig.8 The cloud map of the velocity field along the x-direction from 1s to 30s with the average shear rate  𝛾̇𝛾=100 s-1 in three-dimensional simple shear flow. 
 



 

  
 

action, and the thickness of the shear band thus increases. 
When the simulation time comes to 1000 s, the thickness 
of the shear band basically increases to the thickness of 
the whole fluid grid, and the strain rate applied by the 
whole fluid is 5 s-1. Figure 7(b), 7(c), 7(d) shows the 
distribution diagram of the first normal stress difference N1, 
shear stress 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and strain rate 𝛾̇𝛾 during the fluid shear 
process, respectively. Fig. 7(e) is the average first normal 
stress difference and the average total shear stress of the 
entire computing grid (40,000 solutions) change with the 
simulation time goes, in the early stage of the simulation, 
they have a larger fluctuations and finally the steady state 
is reached.  
 

 
(a) 

 
(b) 

 
(c) 

  
(d) 

 
(e) 

Fig. 7 Streamline diagram distribution and temporal 
evolution of multi-physics with an average strain rate of 5 
s-1 in 2 dimensional simple shear flow. 

 
Also, the velocity distribution Ux of the simulation 

results at 0.1 s-1, 1 s-1, 20 s-1, 60 s-1, 100 s-1 are shown in 
Figure 8. As shown in the figure 8(a) at 0.1 s-1, the velocity 
distribution transition from extreme disorder to mild 
perturbation over 0 s to 10 s, and at 30 s, Ux began to linear 
increase, further increase the simulation time, Ux still 
remains unchanged. During this period, Ux did not show 
significant stratification, that is, no shear bands at the 
strain rate of 0.1 s-1, consistent with the results shown in 
Figure 6 that the shear rate of 0.1 s-1 was not in the stress 
platform (stress with a smaller slope), and demonstrated 
the idea that the entangled polymer solution does not 
have shear bands below the critical 𝑊𝑊𝑖𝑖  number. Figure 
8(b)~(e) shows the applied strain rates of 1 s-1, 20 s-1, 60 s-

1, 100 s-1, respectively. The results show the presence of 
transient shear bands, and the upper shear bands will 
gradually spread down and eventually disappear over the 
simulation time, consistent with the results in Figure 7. 
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(a) 0.1 s-1 

 
(b) 1 s-1 

       
(c) 20 s-1 

 
(d) 60 s-1 

 
(e) 100 s-1 

Fig. 8 The velocity distribution Ux of the simulation results 
at 0.1 s-1, 1 s-1, 20 s-1, 60 s-1, 100 s-1, corresponding to 
(a)~(e), respectively. 
 

The above discusses the multi-physics distribution of 
two-dimensional simple shear flow in the flow field, but 
the two-dimensional does not reflect the situation in real 
experiments, for this reason, the following work will 
discuss the situation of three-dimensional simple shear 
flow. The choice of model parameters and boundary 
conditions is consistent with the two-dimensional simple 
shear flow, with the length of the fluid set to 1 m, the width 
set to 1 m, and the height set to 1 m. The meshing method 
is to choose the equally spaced straight line division 
method, and the grid distribution selected is 100×100×100, 
that is, each mesh is a cube, and the length of the three 
directions of x, y, and z is 0.01 m, 0.01 m, respectively. 

When the average shear rate is set at 5 s-1, the velocity 
field at different times (0 s, 410 s, 1020 s) is shown in Figure 
9, where (a1) ~ (a3) is represented as Ux, (b1) ~ (b3) is 
represented as Uy, and (c1) ~ (c3) is represented as Uz. The 
amplitude of the speed Ux in the x direction is between 0 
and 5 m/s, while the velocity amplitude of Uy and Uz is 
very small, basically within 10-7 m/s, that is, Uy = Uz = 0 m 
/ s. At the same time, The position at the centerline were 
selected as probe positions to study the physics 
distribution, as shown in Figure 10, where (a) is the 
comparation of U and Ux  ,and (b) is the velocity in the X 
direction, (c) is the first normal stress difference 
distribution, (d) is the total shear stress distribution, and 
(e) is the strain rate distribution. By comparing the U and 
Ux in figure (a), we find that Uy and Uz do not affect the 
size of U , so we use the relation of Ux  with the position to 
search the shear banding.  Ux also forms a shear banding 
in the early stages of the simulation, with a high shear rate 
banding at the top and a low shear rate banding at the 
bottom. As the simulation time is further extended, the 
shear banding gradually disappears and the entire flow 
field becomes a uniform flow field. The corresponding first 
normal stress difference, total shear stress and shear rate 
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are initially in a disordered state, and the final flow field 
becomes a uniform flow field and will remain fixed. The 
average first normal stress difference and the average total 
shear stress in the entire flow field have a larger error at 
the beginning and eventually reach a steady state, as 
shown in Figure 10 (f). 

 
(a1) 0 s 
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(c3) 1020 s 

Fig. 9 A cloud map of the velocity field at different 
moments. 
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(f) 

Fig. 10 Distribution and temporal evolution of multi-
physics with an average strain rate of 5 s-1 in 3 
dimensional simple shear flow. 
 

In conclusion, we can learn from the velocity 
distribution map that the " transient shear banding" 
phenomenon of the polymer solution requires a certain 
shear rate 𝛾̇𝛾, that is, the critical number 𝑊𝑊𝑖𝑖, in this paper 
𝑊𝑊𝑖𝑖 = 𝜆𝜆𝐷𝐷 ∗ 𝛾̇𝛾, where 𝜆𝜆𝐷𝐷= 4 s, 𝛾̇𝛾 is for the applied strain rate. 
When the slope of the shear stress platform region was 
small positive values, no shear banding was present in 18M 
PAAm aqueous solution while 𝑊𝑊𝑖𝑖 < 4, and at 4 ≤ 𝑊𝑊𝑖𝑖 < 400, 
transient shear banding were present in the 18M PAAm 
aqueous solution. Figure 11 shows the plot of the 
normalized velocity Ux/U0 distribution at the absolute 
simulation time of 80 s for 1 s-1, 5 s-1, 20 s-1, 60 s-1, 100 s-1 
in 2 or 3 dimensional simple shear flow.It can be found 
from the figure that at 𝑊𝑊𝑖𝑖= 4, the flow field has become a 
uniform flow field, with the larger the 𝑊𝑊𝑖𝑖number, the flow 
field is the more unstable, the greater the degree of the 
flow-induced phase separation appears. To more precisely 
express the time size of the presence of the shear banding, 
we extracted θ from the normalized velocity Ux/U0 
distribution of these five examples, and θ is defined as the 
angle of a velocity tangent to a vertical line near the top 
position, as shown in Figure 11. Figure 12 shows a function 
of θ/45° and t/𝜆𝜆𝐷𝐷, and at θ = 45°, the flow field appears as 
a uniform flow field. It shows that as the 𝑊𝑊𝑖𝑖 number 
increases, the longer the shear banding exists, and the 
longer the flow field changes from a uniform flow field. 

 
Fig. 11 Normalized velocity Ux/U0 distribution plot at the 
absolute simulation time of 80 s for the 1 s-1, 5 s-1, 20 s-1, 
60 s-1, 100 s-1. 

 
Fig. 12 A function of θ/45° and t/𝜆𝜆𝐷𝐷. 

Ⅳ. CONCLUSIONS 

Here we systematically characterized the universality 
characteristics of shear banding behavior in 18M PAAm 
aqueous solutions of 48c* ~500c* from both rheological 
experiments and computational simulations. The 
rheological experiments demonstrate that the shear stress 
does not change with the applied shear rate. At the same 
time, based on the steady-state flow experiment of 
rheology, explore the shear banding behavior under a not 
standard shear stress platform (with a small slope). We 
used a single-mode Rolie-Poly model to numerically 
simulate shear banding features and found the emergence 
of transient shear banding that spread with the simulation 
time and eventually disappear. Moreover, the transient 
shear banding depends on the critical 𝑊𝑊𝑖𝑖 number, and as 
the 𝑊𝑊𝑖𝑖  number increases, the longer the transient shear 
band exists, the longer the time it takes for the transition 
to a uniform flow field. 
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