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1. Introduction

Complex fluids, such as self-assembled surfactant and polymer solutions, exhibit dynamic instabilities and
highly nonlinear flow effects owning to that their characteristic length and time scales are usually much larger
than those of simple liquids. Similar to Newtonian fluids in high Reynolds (Re) number flow regime, complex
fluids could show turbulence-like instabilities but at low Re number and high Weissenberg (Wi) number flow
regime, in which elastic forces dominate over viscous forces. Such an intriguing flow phenomenon observed
from micro- to macro-flows has been coined as Elastic Turbulence [1, 2, 3] and already widely exploited
in many industrial applications such as significant improvement of the mass transfer (mixing) efficiency in
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the microchannel [2], great enhancement of the secondary and tertiary crude oil recovery in microporous
rocks [4], and nearly four times increase of the heat transfer efficiency in microfluidic devices [5, 6]. On the
contrary, the so-called Turbulent Drag Reduction phenomenon occurs at high Re number and moderate Wi
number flow regime, in which the resistance of polymer solution in pipe flows could be significantly lower
than that of Newtonian fluid with the same viscosity [7, 8, 9]. Thus Elastic Turbulence and Turbulent Drag
Reduction could be considered as two extreme manifestations of non-linear dynamics of polymer solutions.
The overriding challenge in regulating the turbulent flow effectively in engineering process relies on better
understanding of strongly correlated dynamic processes with a hierarchy of the characteristic length and
time scales. Molecular interactions control the equilibrium microstructure which forms on mesoscopic length
scales. This in turn interacts with the hydrodynamic fields which are essentially macroscopic scale.

The essential physics of complex fluids lies in the constitutive relationship which forms a bridge between
flow behaviour and microstructure evolution in flow. Doi-Edwards molecular theory on polymer dynamics
[10] is a milestone breakthrough in prediction of the complex rheological behavior of entangled monodisperse
polymer melts [11, 12] and makes it possible to systematically optimize the performance of polymer products
from molecular to mesoscopic level. In the era of digital manufacturing, it is often required to find solutions
of the inverse problem in order to not only optimize molecular and formulation design of polymeric fluids
for given rheological properties, but also to identify the control variables in regulation of their multiple scale
dynamic properties and even to guide the discovery of new physics [13] for construction or improvement of
constitutive model with high physical fidelity. There are at least two nontrivial inverse problems. The first
is to inversely solve the constitutive equation, which is often expressed in an implicit functional form with
high dimensional parameter space [14], for estimation of its control variables or material functions from the
known rheometric properties; The second is to construct a constitutive model based on discrete data sets
on polymer properties as well as the physical principles. The present work will develop a general inverse
learning method for solving the first problem and also lay down a foundation for solving the second.

Various methods have been proposed to estimate the parameters of physical models. A random search
algorithm [15] used in a turbulence simulation requires a large computational resource and does not guarantee
a good convergence. An alternative way [16, 17] is to directly map the outcomes of physical model to its
parameters by training a deep neural network (DNN) from a series of the input parameters and the model
outputs, and then to obtain the implicit molecular parameters. Raiddi et al. [18] developed the physics-
informed neural networks (PINN) and successfully applied in the estimation of material parameters of
Navier-Stokes equation and the unknown pressure field from some observed velocity field. The loss functions
of PINN is constructed by imposing the conservation laws of fluid dynamics expressed in partial differential
equations (PDEs) as the constraints of machine learning. Reyes et al. [19] extended the PINN method
for learning the effective viscosity of the generalized Newtonian fluids from experimental measurements of
velocity and pressure field in time-dependent three-dimensional flows. Xu et al. [20] formulated a physics
constrained inverse learning method for modeling viscoelastic properties from observed displacement data.
Mahmoudabadbozchelou et al. [21] proposed a multifidelity neural network (MFNN) architecture for data-
driven physics-informed constitutive metamodeling of complex fluids. Their results show that the MENN
algorithms outperformed a purely data-driven classical DNNs and could capture the effects of experimental
temperature, the salt concentration, as well as aging within and outside the range of training data parameters
on the rheometric properties of complex fluids.

The intrinsic properties of complex fluids and the dominant factors for controlling fluid responses to
external forces are often quantified experimentally under the well-defined rheometric flow either in simple
shear or extensional deformation. Constitutive models could be then constructed and validated for reliable
prediction of complex flows. In this paper, a DNN will be proposed and trained by a physics-informed
molecular constitutive equation over its parameter space for modeling the rheometric properties of monodis-
perse polymer fluids. A general method is proposed to solve an inverse problem for estimating the model
parameters of the molecular constitutive model. The method is then validated by computing the model
parameters from a series of rheometric data for entangled completely monodisperse linear lambda DNA so-
lution and extremely polydisperse high molecular weight polymer aqueous solutions. The rest of the article
is organized as follows. The problem settings is described in Section 2. The methodology is presented in
Section 3. The results and discussion are reported in Section 4. The conclusions are drawn in Section 5.
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2. Problem setting
A general viscoelastic constitutive equation can be written in a form of
o(t) = ¥[D(1); O], (1)

where o(t) is a general viscoelastic stress tensor and is a functional of strain rate tensor D(t) or strain
history tensor at any instant of physical time t and a set of the physical model parameters @ = [6,, 65, ...6,],
which defines a specific complex fluid. Instead of computing the stress response o(t) from a set of known
model parameters ® and specified D(t), the inverse problem is to solve those unknown model parameters @
of the specified constitutive equation ¥ from a set of the known data of o(t) and D(t) obtained, e.g., from
rheometric experiments.

As an illustration example without loss any generality, the Rolie-Poly model [22] for modeling dynamics of
entangled polymer and wormlike micellar fluids is considered here. It is simplified from the full Doi-Edwards
molecular theory [10, 11] and could account for the main dynamic mechanisms of entangled polymeric fluids,
including reptation, convective constraint release, chain stretch etc. The conformation tensor of polymer
chain A(t) under a velocity field u evolves in time as

DA
E=L.A+A-LT+f(A), 2)
where % is the material derivative, L = Vu is the velocity gradient tensor and LT is its transpose. For

the non-Gaussian version of the Rolie-Poly model [23], which could account for the finite extensibility of
polymer chains, the model function f(A) is defined as

)
fA)y=-La-n- 3&(@(1 - \/i”A +ﬂ(ﬂ) (A - I)}, (3)
™ TR trA 3

where I is the unit tensor, 7p is the reptation time or the disengagement time of polymer chain, tg is the
longest Rouse time or stretch time of polymer chain, 8 is the coefficient of the convective constraint release,
ks(A) is the nonlinear spring coefficient and is approximated by

(3-2222,)(1-1/22,)

max max
(1 - /lz/ﬂgnax) (3 - l/ﬂrznax)
where 1 = +/tr A/3 is the chain stretch ratio with respect to its equilibrium conformation, Ay, is the fixed

maximum stretch ratio of chain molecules. Thus, the polymeric stress could be readily calculated from its
conformation tensor A(t) by

ks(A) = (4)

n
op(t) = Gks(D[A(b) - I] = T—pks(/l)[A(t) -1, (5)
D
where G = Z—[‘; is the plateau modulus and 7, is the zero-shear polymer viscosity. The total stress tensor
could be written as

o(t) = 2n,D(t) + o7p(b), (6)

where the symmetric deformation rate tensor D(t) = % [L + LT] and 7y is the solvent viscosity. Obviously,
the model parameters @ = [1;, 7, Tp, TR, Amax, 8] define a specific Rolie-Poly fluid. Further details about the
Rolie-Poly model could be found elsewhere, e.g. [22, 23].

3. Methodology

A general deep learning method for computing molecular parameters of viscoelastic constitutive model
by solving inverse problems is proposed and outlined in Fig.1. It consists of two parts: 1) a DNN as an
alternative representation for modeling molecular constitutive relationship; 2) a DNN based numerical solver
for inversely computing the molecular parameters @ of constitutive model o(t) = ¥Y[D(t); O] from a set of
known stress tensor o and strain rate tensor D data using gradient descent as illustrated below.
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Fig. 1. A flowchart of a DNN based numerical solver for inversely computing molecular parameters.

3.1. DNN representation of molecular constitutive model

A fully-connected neural network will be firstly trained by exploring the parameter space of a given
molecular constitutive model, e.g., the Rolie-Poly model presented in this work. It contains an input layer,
a number of N — 1 hidden layers and an output layer. The variables in the input layer X include a series
of specified molecular parameters @ = [0}, 6,,...0,] and strain rate tensor D. The transformation of the
variables from the (k — 1) to the k” layer can be written in the form of

Lk (Xk*l) = yk — ak(wkﬁkfl + bk), (7)

where k = 1,..,N and X? = X; Wk € RVNet are the weights of the connections between the k™ and the
(k = 1) layer, b* € RM is the biases term of the kK layer. o* is a nonlinear activation function, e.g. Tanh,
applied to each component of the transformed vector from each layer to make the transformation nonlinear.
Note that no nonlinear activation function is used in the transformation of last layer Ly. After the N
transformation, the output of the DNN can be written as composition of £; functions as,

o=X)=Lyo...0oL;o...0L(X), (8)

where 2 = {Wk,bk}kN_

_, represents the trainable parameters of the DNN. It will be trained by minimising the
loss function defined as:

M
Loss = % D @D(t); 0] - 61D;(1); O + £ H W, 9)
j=0 wieW
where the first term is a measure of the total errors between the DNN output, [ D(t); @], and the theoretical
value, o[ D(t); ®], predicted by the target constitutive equation. M is a number of strain rate data points
sampled in the training. The second term is L2 regularization and ¢ is L2 regularization rate for weight
functions to prevent over fitting. The minimization could be formulated as an optimization problem and
solved by stochastic gradient descent (SGD) algorithm, within which the trainable parameters are updated
iteratively as the following,

0]

"= B — Ve J"(B), (10)

where 7, > 0 is the learning rate and m represents the m” iteration. A variant of the SGD optimization
algorithm, ADAM][24], will be used here.

In general, such a DNN could approximate complex functions to any desired accuracy as long as suffi-
ciently many hidden units and data are available [25, 26]. The DNN will be trained in a sufficient accuracy
to represent the target constitutive model over its molecular parameter space and strain rates under trained.
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3.2. A DNN based numerical solver for inversely computing molecular parameters

Fig.1 shows a flowchart of a DNN based numerical solver for inversely computing molecular parameters.
For any given set of the viscoelastic stress 0 ju,[D(t)] obtained under a known deformation rate D;(t) where
j € [1,M] and M is a total number of the data points, initial trial parameters w = [wi, w;..., w;..., w,] are
randomly selected over their parameter space. The trial parameters w are then converted to the model
parameter @ with its i parameter defined as

0; = (Max 6; — Min 6,)g(w;) + Min 6; (11)

where Min 6; and Max 6; are the minimum and maximum value of the i molecular parameter, respectively,
between which the DNN has been pre-trained in a sufficient accuracy to represent the molecular constitutive
model; the function g is defined as

glw) = (12)

1 +e @i
and is a Sigmoid function with the monotonic property over its variable range of g(w;) € [0, 1]. The stress
tensor 0[D;(t), w], as a function of the known deformation rate D;(t) and the trial parameters w, is then
computed by the pre-trained DNN. The outcomes are measured by an error function defined as

i 16[D(t), ©] = T garal D ()]

13
a-data[Dj(t)] ( )

|-

Error(w) =
=1

-~

By minimizing the error function, the inverse problem is solved by the gradient decent method, in which
the gradient is computed through automatic differentiation[27][28]. In the s optimization iteration, the i
parameter w; is updated as,

S Z s OError(w)

! ! ow?!

w (14)
where p* is an iteration parameter and will rapidly decrease when the error function could not be minimized
further. The above optimization iteration is repeated until a convergence criterion is satisfied as

™! — | < € (15)
where € is set in advance as a very small value. Moreover in order to validate the independence of the solution
on the initial conditions, the inverse problem could be solved by randomly selecting several different sets of
the initial trial parameters w.

4. Results and discussion

4.1. Training DNNs for modeling entangled polymer solutions

As an illustration of training DNNs for modeling entangled polymer aqueous solutions, Table 1 shows the
parameter variation of the Rolie-Poly model. The solvent viscosity n; is usually considered as a constant and
in this particular case set as the viscosity of water [29, 30]. The training data were generated by sampling
the model parameter space. For the input layer, each molecular parameter was sampled uniformly in either
linear scale or logarithmic scale over its variation range. At least ninety data points uniformly distributed
in the logarithmic scale under simple shear flow over a wide range of shear rate from 107* to 10*. For each
set of the sampled model parameters and shear rate, the corresponding output layer data were obtained by
computing the steady viscoelastic stresses from the Rolie-Poly model. The DNN was trained through 10,000
sets of training data and subsequently validated by additional 500 sets of sampling data. The learning rate
of the DNN was tuned around 0.001 to obtain a reasonably good learning convergence. The DNN with the
overall lowest relative error between the viscoelastic stresses calculated by the DNNs and the original model
is comprised of 5 hidden layers and 192 neurons, and will be used in the present studies here after.
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Table 1. A range of parameter variation of the Rolie-Poly model

Parameter | Variation range (SI unit)
np 1 ~ 6,000 Pa.s

Ap 1 ~5,000s

AR 1~ 50s

Xmax 15 ~20

B 1 ~25

4.2. Validation of Convergence

In order to validate the DNN based solver for inversely computing molecular parameters, three sets of
the model parameters arbitrarily sampled over the range specified in Table 1 were considered as the solutions
to be found. The corresponding viscoelastic stresses over a range of shear rate could be readily calculated
from the trained DNN and used as the inputs for solving the inverse problem. The initial values of the
model parameters were randomly generated within the range specified in Table 1. As shown in Fig2, the
loss of the DNN based solver along with the relative error of the estimated molecular parameters converge
rapidly as a number of iterations is increased. The inverse problem could be solved accurately. However,
the converging rate for the solutions of the model parameter np and Ap is relatively slower than those of
other parameters, due to their much wider variation range.

Instead of using the trained DNN, the corresponding viscoelastic stresses over a range of shear rate could
be directly calculated from the Rolie-Poly model and use as the inputs for solving the inverse problem. By
following the same procedure as the above for inversely computing the molecular parameters, the loss of the
DNN based solver along with the relative error of the estimated molecular parameters are plotted against a
number of iterations and shown in Fig3. In comparison with Fig 2, the reasonably good convergence could
be achieved. As shown in Fig3(b), there is about 10% relative error for the model parameters np and Ap. It
could be further minimized by increasing the accuracy in the DNN approximation of the Rolie-Poly model.

4.3. Effects of input data noise

In order to evaluate the effects of stress data noise on the estimation of the molecular parameters, the
white noise were superimposed into the viscoelastic stress data so that the input data deviates from their
original values randomly in a certain maximum percentage. At a given noise level, eight sets of such an
input noise data were generated. Each set of the noise input data was solved ten times by the DNN based
solver using randomly generated initial values over the parameter range to validate the consistency of the
solutions. The mean and standard deviation of each model parameter were then calculated and presented
in Fig4, in which the estimated parameters are normalized by their solutions computed by using the input
data without any noise. The error bars represent the standard deviation of the means, respectively. Over
the noise level between 0 and 0.02, the changes of the mean values are within their standard deviation and
are not statistically significant. However as the noise level increases up to 0.03, the mean solution values of
the parameters np and Ap are statistically different from the original one. Further increasing the noise level
above 0.03, the mean solution values of the parameters np and Ap are shifted even more from the original
solutions and then saturated from the noise level of 0.04 onward. The standard deviation also increases
slightly. Over the variation range of the noise level, the mean solution values of the parameters Ag, xmax and
B are statistically indistinguishable from their original solutions. The results simply reflect the fact shown
in Table 1 that the variation ranges of the parameters np and Ap are about two orders magnitude higher
than the those of the parameters Ag, ymax and B, hence much more sensitive to the stress data noise.

4.4. Validation by completely monodisperse entangled polymer solution

Banik et al. [29] recently reported the molecular parameters extracted from the linear viscoelastic data
of completely monodisperse ultrahigh-molecular-weight linear lambda DNA solutions over various entangled
concentration. In order to validate the DNN based solver for inversely computing the molecular parameters,
the steady shear stress and the first normal stress difference were generated by the Rolie-Poly model using
those extracted molecular parameters over a range of shear rate from 107 to 10*. Taking the steady stress
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Fig. 2. The convergence of the DNN based solver for inversely computing molecular parameters. (a) the loss of the DNN based
solver is plotted against a number of iterations; (b)(c)(d) the relative errors of the estimated molecular parameters are plotted

against a number of iterations for the testing sample 1, 2, 3, respectively

Table 2. The molecular parameters inversely solved by the DNN based solver for the lambda DNA solution over various

entangled concentrations [29]

Concentration 0.82 mg/mL 1.01 mg/mL 1.55 mg/mL 2.06 mg/mL

Parameter Extracted DNN-2k DNN-10k | Extracted DNN-2k DNN-10k Extracted DNN-2k DNN-10k Extracted DNN-2k DNN-10k
np 124 12.4540.04 | 12.53+0.02 22.6 22.47+0.02 | 22.5840.02 4744 475.7240.44 | 473.47£1.16 4811.7 | 4818.38+40.15 | 4784.20+0.37
Ap 87.0 88.14+0.1 | 88.00+0.09 109.0 109.10+0.07 | 109.00£0.01 1006.0 996+1.4 998+3.6 4092.0 4109.5040.01 | 4095.10+0.02
AR 11.0 10.740.1 10.740.1 14.0 12.140.1 13.00£0.08 21.0 21.0£0.5 20.5+0.2 29.0 31.5040.01 31.70+0.02
Xmax 18.0 17£1.2 19+£1.9 18.0 174+2.4 17.240.7 18.0 17+£2.1 19+1.1 18.0 18.300+0.002 | 17.500£0.004
B 20.0 18.8+0.3 19.540.3 13.0 11.340.1 12.20+0.06 5.00 5.040.07 5.0020.05 1.0 1.000£0.001 1.000£0.002
Error of N 0.0088 0.0076 0.0063 0.0025 0.0098 0.0017 0.0059 0.005
Error of sheer stress 0.0027 0.0037 0.0048 0.0017 0.0094 0.0019 0.0037 0.0035
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Table 3. The molecular parameters inversely solved by the DNN based solver for highly polydisperse polyacrylamide aqueous

solution over semi-dilute entangled concentration region [30], where c* is the overlap concentration of polyacrylamide in aqueous
solution.

Parameter
Concentration e Ap A Xmax B
48c* 65.140.01 3.9+0.002  49.840.0001 15.0+1e-05 25.540.0001
97c* 171.440.03  4.5+0.001 49.84+7e-05 15.0f1e-05  25.5+3e-05
150c* 1734.6+0.1 23.740.002 46.64+0.0002 16.5+8e-05 1.042e-05

of the DNA solution as the input data, the inverse problem was solved by the DNN based solver with the
gradient decent method as an optimizer. For each concentration of the DNA sample, the model parameters
were solved by the DNN based solver ten times with different set of the initial values of the Rolie-Poly
model parameter randomly generated over its parameter range. As shown in Table2, the averaged solutions
of the molecular parameters from ten different sets of the initial values and their standard deviations were
listed along with the mean relative errors of the steady first normal stress difference and the steady shear
stress over about 91 shear rates. The solutions from the DNN based solver are in a good agreement with the
extracted molecular parameters. As shown in Figh(a), the steady viscoelastic stress vs. shear rate curves
calculated by the DNN with the model parameter obtained from solving the inverse problem are in excellent
agreement with those predicted by the Rolie-Poly model with the originally extracted parameters. The
effects of data size in the training DNN are also shown in Table2. The solutions obtained from the DNN
trained with 2000 data sets are in reasonably good agreements with the results obtained from 10000 data
sets. The concentration scaling analysis of 7p and Ap shows that their power law exponents are 6.63 and
4.38, respectively. The results agree favourably with the exponents of 6.7 + 0.3 and 4.7 £ 0.3 estimated from
the linear viscoelastic data of completely monodisperse lambda DNA solutions by the time-concentration
superposition method [29, 30]. Interestingly the DNN based solver not only could obtain the solutions of the
model parameters accurately, but also resolve the power-law concentration scaling of the materials function
of the DNA solutions satisfactorily. Note that such a concentration scaling was not explicitly built in the
DNN nor in the Rolie-Poly model. It was trained implicitly into the DNN by sampling over the materials
parameter space of the Rolie-Poly model.

By following the same procedure, the DNN based solver has been applied for inversely extracting the
molecular parameters of the Rolie-Poly model from the experimental data of highly polydisperse and high
molecular weight polyacrylamide aqueous solution over semi-dilute entangled concentration region [30]. The
results are listed in Table3. The concentration scaling analysis of np and Ap shows that their power law
exponents are 2.74 and 1.45, respectively. The results are in a good agreement with the exponents of
2.48 £ 0.09 and 1.40 = 0.06 estimated from the experimental data by the time-concentration superposition
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Fig. 5. Comparison of the original input stress vs shear rate data with the data calculated by the Rolie-Poly model with the
parameters inversely solved by the DNN based solver (a) for the completely monodisperse ultrahigh-molecular-weight linear
lambda DNA solutions;(b) for the highly polydisperse and high molecular weight polyacrylamide aqueous solution.

method [30]. Obviously, the DNN based solver could capture the concentration scaling of material function
satisfactorily even for highly polydisperse polymer solutions. Fig5(b) shows a comparison of the shear stress
and the first normal stress difference as a function of shear rate between the experimental data and the
calculated results by the Rolie-Poly model using the molecular parameters obtained from the DNN based
solver. Although the Rolie-Poly model gives a reasonably good fit, there are still significant deviation
between the model prediction and the experimental data, especially on the first normal stress difference in
the high shear rate region. The sources of the deviation are mainly from the Rolie-Poly model itself as the
DNN training was with respect to monodisperse polymer solutions. At present the Rolie-Poly model with
multiple modes could not yet accurately describe the nonlinear fluid flows of highly polydisperse semi-dilute
entangled polymer solutions.

5. Conclusion

A general deep learning method for computing molecular parameters of viscoelastic constitutive model is
proposed. It utilizes a DNN as an alternative representation for modeling molecular constitutive relationship
and a DNN based numerical solver for inversely computing the molecular parameters of the pre-trained
constitutive model. Without loss much generality, the method has been validated by considering the Rolie-
Poly model for modeling the linear and non-linear dynamics of entangled polymer solutions in a wide range
of concentrations. The results show that as long as the proposed DNN could represent the Rolie-Poly
model in sufficiently high accuracy, the DNN based numerical solver would rapidly converge to its solution
during inversely computing molecular parameters. The solution of the DNN based solver is robust against
small white noise disturbance to the input stress data. However if the input stress significantly deviates
from the original stress, the DNN based solver could readily distinguish such a difference and converge
to a different solution, hence demonstrates the resolution of the numerical solver for inversely computing
molecular parameters.

The molecular parameters computed by the DNN based numerical solver from the steady stress data
of completely monodisperse linear lambda DNA solution not only reproduce accurately their steady stress
over a wide range of shear rate at various concentrations, but also show the power law concentration scaling
with nearly same scaling exponent as those estimated from the experimental results. Even for highly
polydisperse polyacrylamide aqueous solution, the DNN based numerical solver also resolve the power law
concentration scaling satisfactorily. However the polydispersity of polymer solutions results in significant
deviation between the experimental steady stress of polyacrylamide aqueous solution and the calculated
results by the Rolie-Poly model using the molecular parameters obtained from the DNN based solver. The
deficits of the Rolie-Poly model could be remedied by further development of molecular constitutive model
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for polydisperse polymeric fluids. Such a theoretical approach could be complemented by a data driven
approach through deep learning multiple scale experimental and computational data.

The proposed DNN based solver is a general method for inversely computing material function of consti-
tutive model and in principle could be applied to other complex fluids. The physics-informed DNN captures
the fundamental features of complex fluids in linear and nonlinear dynamics, it could be further trained
by experimental and computer simulation data to account for other effects defined through their material
functions, including temperature, pressure, molecular mass and distribution, composition, solvent quality,
etc., hence to establish an highly efficient approach in optimizing molecular and formulation design of com-
plex fluids by solving an inverse problem as well as in studying complex fluid dynamics, in complementary
of the traditional approaches.

Acknowledgments

Acknowledgments: Financial support by the Ministry of Science and Technology of the People’s Republic
of China under the Grant No.: 2020AAA0104804 and 2020AAA0104800 are gratefully acknowledged.

References

[1] A. Groisman, V. Steinberg, Elastic turbulence in a polymer solution flow, Nature 405 (2000) 53-55.

[2] A. Groisman, V. Steinberg, Efficient mixing at low reynolds numbers using polymer additives, Nature 410 (2001) 905-908.

[3] A. Groisman, V. Steinberg, Elastic turbulence in curvilinear flows of polymer solutions, New Journal of Physics 6 (2004)
29.

[4] A. M. Howe, A. Clarke, D. Giernalczyk, Flow of concentrated viscoelastic polymer solutions in porous media: effect of
mw and concentration on elastic turbulence onset in various geometries, Soft Matter 11 (2015) 6419-6431.

[5] B. Traore, C. Castelain, T. Burghelea, Efficient heat transfer in a regime of elastic turbulence, Journal of Non-Newtonian
Fluid Mechanics 223 (2015) 62-76.

[6] W. M. Abed, R. D. Whalley, D. J. Dennis, R. J. Poole, Experimental investigation of the impact of elastic turbulence on
heat transfer in a serpentine channel, Journal of Non-Newtonian Fluid Mechanics 231 (2016) 68-78.

[7] P.S. Virk, Drag reduction fundamentals, AIChE Journal 21 (1975) 625-656.

[8] C. M. White, M. G. Mungal, Mechanics and prediction of turbulent drag reduction with polymer additives, Annu. Rev.
Fluid Mech. 40 (2008) 235-256.

[9] L. Xi, Turbulent drag reduction by polymer additives: Fundamentals and recent advances, Physics of Fluids 31 (2019)
121302.

[10] M. Doi, S. F. Edwards, S. F. Edwards, The theory of polymer dynamics, volume 73, oxford university press, 1988.

[11] R.S. Graham, A. E. Likhtman, T. C. McLeish, S. T. Milner, Microscopic theory of linear, entangled polymer chains under
rapid deformation including chain stretch and convective constraint release, Journal of Rheology 47 (2003) 1171-1200.

[12] J. Bent, L. Hutchings, R. Richards, T. Gough, R. Spares, P. D. Coates, I. Grillo, O. Harlen, D. Read, R. Graham, et al.,
Neutron-mapping polymer flow: Scattering, flow visualization, and molecular theory, Science 301 (2003) 1691-1695.

[13] R. Iten, T. Metger, H. Wilming, L. Del Rio, R. Renner, Discovering physical concepts with neural networks, Physical
review letters 124 (2020) 010508.

[14] H. C. Ottinger, Stochastic processes, polymer dynamics, and fluid mechanics, in: Stochastic Processes in Polymeric
Fluids, Springer, 1996, pp. 1-15.

[15] N. Chen, A. J. Majda, A new efficient parameter estimation algorithm for high-dimensional complex nonlinear turbulent
dynamical systems with partial observations, Journal of Computational Physics 397 (2019) 108836.

[16] A. M. Annaswamy, S.-H. Yu, /spl theta/-adaptive neural networks: a new approach to parameter estimation, IEEE
transactions on neural networks 7 (1996) 907-918.

(17] B. M. Afkham, J. Chung, M. Chung, Learning regularization parameters of inverse problems via deep neural networks,
Inverse Problems 37 (2021) 105017.

(18] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics 378
(2019) 686-707.

[19] B. Reyes, A. A. Howard, P. Perdikaris, A. M. Tartakovsky, Learning unknown physics of non-newtonian fluids, Physical
Review Fluids 6 (2021) 073301.

[20] K. Xu, A. M. Tartakovsky, J. Burghardt, E. Darve, Learning viscoelasticity models from indirect data using deep neural
networks, Computer Methods in Applied Mechanics and Engineering 387 (2021) 114124.

[21] M. Mahmoudabadbozchelou, M. Caggioni, S. Shahsavari, W. H. Hartt, G. Em Karniadakis, S. Jamali, Data-driven
physics-informed constitutive metamodeling of complex fluids: A multifidelity neural network (mfnn) framework, Journal
of Rheology 65 (2021) 179-198.

[22] A. E. Likhtman, R. S. Graham, Simple constitutive equation for linear polymer melts derived from molecular theory:
Rolie-poly equation, Journal of Non-Newtonian Fluid Mechanics 114 (2003) 1-12.

(23] K. K. Kabanemi, J.-F. Hétu, Nonequilibrium stretching dynamics of dilute and entangled linear polymers in extensional
flow, Journal of non-newtonian fluid mechanics 160 (2009) 113-121.



12

[24]
[25]
[26]
27]

(28]

29]

(30]

Minghui Ye etal / Journal of Computational Physics (2022)

D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).

K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural networks 4 (1991) 251-257.

K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural networks 2
(1989) 359-366.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.,
Tensorflow: Large-scale machine learning on heterogeneous distributed systems, arXiv preprint arXiv:1603.04467 (2016).
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al.,
Pytorch: An imperative style, high-performance deep learning library, Advances in neural information processing systems
32 (2019).

S. Banik, D. Kong, M. J. San Francisco, G. B. McKenna, Monodisperse lambda dna as a model to conventional polymers:
A concentration-dependent scaling of the rheological properties, Macromolecules 54 (2021) 8632-8654.

Y. Fan, A. Lanzaro, X.-F. Yuan, Universal concentration scaling on rheometric properties of polydisperse and high
molecular weight polyacrylamide aqueous solutions, Chinese Journal of Polymer Science (2022).

Supplementary Material

Supplementary material



